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Abstract

We report here some new results we have obtained for the
diagonal element of the second-order density metrix (pair function)
and for the momentum distribution of an interacting electron gas.
" In the low density limit, the pair function has heen discussed
previously hy March and Young (1959) and it is shown here that,
to a similar degree of approximation, the first-order density
matrix and hence the momentum distribution may be obtained. In
the high-density probler, the pair function has also been
calculated using the Green's function approach and this result
complements the calculation of the momentum distribution carried
out recently by Daniel and Vosko (1960). From the information
thus available in these high and low density limits, the range
of usefulness of the concept of the Permi surface in an
interacting electron gas is discussed.

Also, results of variational calculations on the stability
of Overhauser spin~density waves in metals are reported. It is
concluded that such waves reduce the energy below the Hartree-
Fock value only when the interaction becomes very strong, or
equivalently when the density is very low.

Some preliminary work on the correlation problem in a

non-uniform electron gas is also briefly discussed.
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1., Introduction

As we discussed in ASR No. 1, the problem of dealing with
the Coulomb interactions between conduction electrons in metals
has prov:d very formidable and no complete solution has, -as
yet, been found. In recent years, beginning with the important
investigation of Macke (1950), attention has been focused
primarily on the use of perturbation theory. Unfortunately, the
perturbation expansion does not prove useful in practice in the
range of real metallic densities, which are characterized by the
usual gas parameter rq lying in the range 2 < rg < 5.5,

As we emphasized in ASR No. 1, in attempting to undersfand
the correlation problem, it is often useful to consider a wider
range of densities than that represented above, and in particular
to consider the formal limiting cascs ry 0 and Ty = . The
first case represents the domain of perturbation theory based
on plane waves, but the gecond case has been less fully discussed.
Por this reason, we have extended the earlier work by March and
Young (1959) on the diagonal clement of the second-order matrix
(pair function) and have thereby obtained the first-order density
matrix and momentum distribution in this limit of low density.
The results of this calculation are reported in §3 after a brief
summary of the results of the Hartree-Fock approximation in §2.
In §4, the other extreme limit of high density is discussed. 1In
ordef to facilitate the calculations in this limit, a generalization

of the concept of density matrices proves desirable as we
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emphasized in §2 of ASR No. 1. The appropriate tools are then
found to be the first and second-order Green's functions
familiar to field theorists, A calculation is reported which
yields the pair function in the high-density limit: uniform
application of. this same method leads, in addition, to results
in agreement with those of Daniel and Vosko (1960) for the
momentum distribution, By analysis of these limiting forms

for high and low density it is shown in §5 that information may
be obtained on the range of usefulness of the éoncept of a Fermi
surface in metals.

In §6 we report the final results of a variational
calculation carried out by one of us (N.H.M.) in conjunction
with M. I. Darby and W. H. Young. This was designed to examine
the stability of Overhauser spin-density waves in metals. The
results provides strong evidence that such waves are only
energetically favoured for very strong interactions, or
equivalently, for very low densities. They appear therefore
to have no relevance to the correlation problem for real metallic
densities,

Finally, in 87, we report some preliminary findings on the
proton lattice, in both high and low density limits.

2. Hartree-Fock pair function and first-order density matrix
We briefly recall here that our problem is basically to

calculate the gmound state wave function *(;1 X2 oo zN) for
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a system of N electrons, where 31 denotes the space co-ordinates

Iy and the spin co~ordinates Oy from the SchrBddinger equation
HY = €y (2.1)

' where the Hamiltonian H is given in full in equation (2.1) of

ASP No.1. As stressed in that report, it is often both convenient,
or more important, conceptually very fruitful, to work with first
and second-order spinless density matrices 7(21’31) and

P(r+'r2'pir2) defined by the equations
Y(zs'p1) = N /w*(_x;ﬂmza---zN)W(a«m sXaeeeXy)d0y AXa...dxy (2.2)

T(p1'p2'pir2) = ll(H.z;_L). /‘l’*(.I_H'01221025300OLN)'\I’(£1C1I‘.202253----..JS-N)

dos 402 4Xa ... A%y (2.3)
We note now that the diagonal clements of vy and T have direct
physical interpretations., Thus y(24 21) gives the particle
density which in the Sommerfeld model is simply the constant
3/uxr ®, while T(pirarfipz) is effectivel& the probability of
electron separation or the pair distribution function. Then,
as Mayer (1955) was the first to show, the energy per particle
€/N is given by

€. - (2—1323)-1 [v=£ Y<£l£)]£'=£ - /:(1 .- F(2))g a2 (2.4)

’
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where F(Z) = F(jz' - £|) is the pair function, normalized to unity
for large |z’ - r|.

When the total wave function is a determinant of plane waves,
we have the usual Hartree-Fock forms

Ko? J1(kolr’ -z}
v(z'z) = ?f" j l(tflfg‘- 2%') “J1(p) = (sin p - p cos p)/p? (2.5)

2

V3 {mkf;g' - ;n} ’ (2.6)

F(z'r) =
kojp' - |

where kf is the magnitude of the wave vector at the Fermi surface

and is related to the mean interparticle spacing by

& = - (F)'. (2.7)

Using atomic units, it follows from (2.5) and (2.6) that the energy
per particle is

BIGESLIGES

3. Pair function and first-order matrix in low-density limit
The low-density form of the palr function has been discussed

earlier by March and Young (1959) using the electron lattice model
of Wigner (1938). We simply summarize the results by saying that
as r, becomes very large, the electrons relative to a given particle

we have singled out, and placed at the origin of co-ordinates sit
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on the sites of a body-centred cubic lattice. As ry is then
reduced somewhat, the electrons can be thought of as represented

by harmonic oscillator functions

v = (g)i exp <- z;f.) a=r"%, (3.1)

The results obtained by March and Young (1959) for the pair function
are represented in curves 1 and 2 of Fig. 1, for cases ry = 100
end r, = 4. For comparison, the Fermi hole result given in (2.6)
is also shown in curve 3, We emphasize that while curve 1 should
be reliable, curve 2 represents an extrapolation beyond the range
of validity of the low density form (3.1), and is given solely to
show the qualitative influence of varying rge

We shall now indicate how this work may be generalized to
yield the first-order density matrix and momentum distribution for
a low-density gsas. From the orbitals (3.1), centred on each
lattice site, we build a Dirac density matrix. This will not, of
course, contain the condition of translational invariance, that is
the diagonal element will not be a constant. To obtain a result
consistent with the Sommerfeld model we must average over all
positions, and then the desired first-order density matrix is

easily shown to be

3
v(z'c) = gor exp (- Bz’ - aF)- (3.2)

<

The form (3.2), as 1s easlily seen, satisfies all the essential

conditioné, but its range of validity is, of course, restricted,
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as we shall discuss below, Nevertheless, in conjunction with fhe
high density results of §4, it may be used to draw some interesting
conclusions about the Fermi -surface (see §5).

At this stage, it is enlightening to examine the momentum
distribution corresponding to the first-order matrix (3.2), and
this may be found as follows: We require the occupation numbers
P(g) of plane wave states V'#eﬂ"‘-'a, where V is the volume of the

metal and thus we write

v(z'e) = & Z p(g)e L’ oKL, (3.3)

or remembering that the density of states in k space is (1/8%3)V
and using Bauer's expansion for a plane wave as a series of

spherical waves:

Lxk? Ak, (3.4)

It is convenient at this point to measure k in units of the Fermi

momentum k., that is we write K = k/kf, and then (3.4) becomes

k.2 ein k Kjr' - p|
'n) - f
v@'e) = & j PE) R (3.5)

Inverting this relation and using (3.2) for y(p'r) we find

P(K) = f:; exp {- (%)§ ra-'}K’}, | (3.6)
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where we have eliminated ke using (2.7). As we have remarked
earller, the range of validity of (3.6) is restricted, bécause

the orbitals ¥ on different lattice sites have been assumed
orthogonai, whereas thié is only rigorousely true in the limit

fs -+ ., However, a rough estimate of the range of validity may
be obtained by noting that the occupation numbers P(K) must always
lie between O and 1. Since P(K) as given by (3.6) has its

maximum at K = O, we must have that

%

:5; < 1 (3.7)

Ts

or ry > 9+3.
The kinetic energy per particle, in the approximation implied by

(3.6) is easily shown to be

% = LT}'!" (3.8)

Tg

in agreement with Wigner (1938). La ‘er treatments based on more
careful study of the dynamics of the vibrating electron lattice
(Coldwell-Horsfall and Maradudin, 1960; Carr, 1961) change (3.8)
somewhat, but will not affect the overall validity of the argument
presented above, We note finally for the low-density limit,

that the momentum distribution is of classical 'Maxwell-Boltzmann'
form: this is in sharp contrast to the high density results to

which we now turn.
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4. Pair function and first-order density matrix in high-density

iimit
Using the perturbation theory of Gell-Mann and Bryeckner

(1957) in suitable form, we shall now discuss the way in which the
pair function and the first-order density matrix develop from the
Hartree-Fock forms given in £2, equations (2.6) and (2.5), 1In
order to do so. 1t‘1s‘very convenient to introduce a generalization
of density matrices to include also the time: . this will greatly
facilitate the setting up of useful equations from which the
matrices éan be determined. We discussed this situation fully

in §2(1i1) of ASR No. 1, where we .pointed out that the first and
second order Green's functions constitute the desired generalizations
of the density matrices. 1In fact, equations (2.38) and (2.39) of
ASR No., 1 give the cxplicit relations between the Green's functions
and the density matrices. The basic equation for the second-order

Green's function (sece (2.35) of ASR No. 1) may be written in the form

G(xyXaXaXs) = G(X1Xa)G(x2%4) - G(x4x4)G(x2x3)

+ ] a‘y, a*y. a*zy a*z2 G(x4y4)0(x2¥2)I(y1¥22122)@(2422Xa%4e )
(4e1)
In the high density limit it now appears possible to make progress
in the electron gas problem by inserting the first approximation
for G(xyXpXx3x4) inside the integral, provided we approximate
sufficiently carefully to the interaction operator, The procedure .

to be adopted was outlined in §4(iii) of ASR No. 1, and we have



now carried through the calculations in detail, as described below.
The basic equations of the trcatment we shall employ are (4.25) and
(4,26) of ASR No., 1. The method used is to seek the Fourier |
traﬂsform of the two-particle Green's function, which is closely relateé
to the second order density matrix (see (2.39) of ASR No. 1).

We therefore write the interaction

v(r) = %; = % ;ﬁ v(k) elk.r (4.2)

-

and then it follows that
2 ) : )
v(k) = 455 (1.3)

Furthermore we develop Go(rt), which enters the Green's function
equation for the two-spin case, namely,

G(;tgltgtuglt”) - GO(gt g_t”)_Go(g'tg't") - _&_ Go(ntnltll)e_o(alt;-,tu)
"/ a*yy a*ya Go(zty1)Go(p' ty2)V(y1=y2)Go(y12t”)Go(Fap't")

+.% [ d*yy d*ya2 Go(rty:)Ge (2’ ty2)v(¥1-¥2)Go(yip't")Go(yapt"),

(’4.'4)
in the form
Go(rt) = ziv YI Go (ke )el(Ker = €2) 4¢
'k - 0o
(4.5)

il
|-
&
Lan
3
ct+
N
[« ]
(7Y
ol
H
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After some calculation it may then be shown that

-ik?2
e 1k2/2 ¢t

Go(kt) = - 1 t<0 k>0
Y p-]
= le 1k2/2 ¢ t>0 k>1 ‘ :
(4,.6)
=0 t <0 k>1
t >0 k<¢1

Also it is known that equation (4.25) of ASR No. 1 for the

modified interaction V may be solved ﬁ& Fourier analysis, and

writing
V(y1-y2) =._2_1]t7 ;-‘ v(qw) eiQ(I‘1-I‘2)-iw(t1-t2) aw (u.7)
X
the solution is
v(qw) = ———2Xas (4.8)

@?[1 + Fh Q(w)]

where
Qo(qw) = [ a’k {w = (qz/fl oK) + 18 +Tq’7”£1—+ q.k)+18}°‘
gl (4.9)
This latter function Qo(qw) has been discussed earlier by DuBois
(1959). |

If we now denote the correction to the Hartree-Fock result for

a(rt r't rt” rt") by Gbg’ then we may write
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- !
G'bg(rt I'lt, rt" I’lt”) = rz%y![aq eiQ(r r ) Gbg(q’ t - t")
'=/ a*ys d*yz Go(rt, ¥4) Go(r't ya) V(yi-¥2) Golrirt”)Ge(rar’t")

= '(—17172 / dk 4€ dk’' 4de’ dq dw eiq(r-r') - 1(€+€l)(t,- t”)
w .

x Go{kE) Go(k - q, € - w) v(qw) (4.10)

If we let t” » t* at this stage we obtain

Gbg(q) = -(5;'-‘-)-9-] dk A€ dk’ A€’ dw Go(kE) Gol(k - a, € - )

v(qw) Go(k'€’) Go(k' + ¢, €' + w)

= - -(2—:‘-77[ Qo?(qw) v(qw) dw, | (4o11)

Substituting for v(qw) we obtain the final result

(Q) = - 1 adm Qo?(qw) ars/xq? (4.12)
Cogld) = (27‘5’_[“ 1 +ars/%%q%) Qo(qw) )

Further progress calls for the use .of numerical methods and this

aspect of the work is now being planned.

5. The Meaning of a Fermj surface

The fact that we can obtain the momentum distribution in two .
1imiting cases has interesting implications, For, as the work
of Daniel and Vosko has shown, the discontinuity in P(K) at the
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Fermi surface for ry = 0 1is not‘removed but only reduccd as the
density is lowered. While this result seems not to have been
established rigorously outside perturbaiion theory, there seems
strong empirical evidence from the sharpness of the Fermi surface
in real metals that such a discontinuity does in fact persist,

However, our low density treatment r_ - « could equally well be

8
made the basis of a pérturbation treatment, and no sign of the
discontinuity would then occur. Thus, the evidence seems clear
that as we follow the momentum distribution as it develops from

the two limiting cases of small and large ry there must come a
critical coupling strength, or a critical density, at which the
discontinuity in phe momentum distribution is reduced to zero.

For lower densities, it then appears that the concept of a Fermi
surface will no longer be useful. We believe at present that the
critical value, r, say, will lie outside the range of real metallic
densities, or in other words that r. will exceed 5°5. No
quantitative evaluation has so far proved possible however,
Questions also remain as to the nature and order of the 'transition'
occurring at r_. We do not expect that the pair function will

c
undergo any marked changes at'rc and probably, to obtain a clear
picture of the transition, it will eventually prove necessary to
examine the third and higher-order density matrices.

Finally, to give an indication of the change in the momcntum

distribution as the density is varied, we have plotted in curve 1
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of FPigure 2 results for P(K) as given by Daniel and Vosko for the
high density values (rs £ 2) and by (3.6) for the low density
region. Curve 2 for r = 16 should be viewed with some caution,’
but the result for ry = 100 (curve 3) should represent a good
approximation. The great difficulty, as we have stressed, is to
obtain a sufficiently good approximation to the ground state in
the region 2 < rg < 5+5 and to locate the critical value of ry
with precision.

6. Stability of spin density waves in metals (with M, I. Darby and
W. H. Young)

‘ We record here the final results of the calculations of

M. I. Darby, one of us (N.H.M.) and W. H., Young bearing on the
spin density waves of Overhauser (1960). The analysis was set
out in ASR No. 1 and morec accurately (avoiding a sphere
approximation made earlier) in section 2 of TSR No. U. However,
evaluation of the potential energy given in equation (3) of that
Repért indicated that the term in a® in the potential energy was
exceedingly small. Examination of the reasons for this led to
the use of an alternative variational function which proved much
more accurate,

Using the notation of A3SR No. 1, the transformation function

R(r) was taken as having components

- a i
Ri = x1 + p sin o xi(a

1,25* 3;) (6.1)
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and then in place of equation (1) of TSR No. 4, we easily find

for the increase in the kinetlc energy per particle:

AT _ L 32 (x2)¥ 3 o2 605582
F - 2o95) - gt (6.2)
where s
= (4=
AN = (3 Pge
Similarly the change in the potential energy per particle is
given by
AV _ _ 0-0324a (6.3)
N ~ A °

Thus, the energy is lowered by allowing non-zero amplitude of
the spin-~density waves when

N> 187

or r, = (ﬁ%)é A > 116, (6.4)

This appears to us to be fairly conclusive evidence that spin
density waves are not encrgetically favourable until the electron
density becomes very much lower than occurs in real metals., Charge
density waves may perhaps lower the energy at higher densities

however, (sce, for examplc, Young, 1961).
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7. Proton latticc problem (with W, Jones)

We shall now give a brief account of some preliminary work
we have carried out on the non-uniform electron gas ﬁrqblem.
Whercas, in the Sommerfeld model, the 'natural' orbitals, of the
‘theory are planc waves for all electron densities, in the casc of
a periodic lattice, the 'natural' orbitals will vary with density.
This is an added complication, and has led us to investigate how
we should obtain the Bloch orbitals for a given density. This
seems possible at present only in the limits of high and low
density, and we shall restrict our discussion to these cases.

We should remark at this point that the ground-state cnergy of
an electron gas in a lattice of positive point charges has been
studied by Bellemans and de Leener (1961). These workers
expanded the grand partition function of thc system in powers of
the coupling parametcr between the clectrons and the positive
point chargces and between pairs of electrons., By summing
infinite series of divergent terms they werce able to obtain
finite results for the energy per particle.

We have restricted ourselves up to the present to the
calculation of Dirac's matrix in the high-density limit. Thus,
we cannot expect to obtain an cnergy which includes the Gell-Mann-
Brueckner correlation energy, in contrast to Bellemans and
de Leener., However, we shall demonstratc that there is an

intimate conncction betwecn their approach and that given below.
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We shall work in a Hartrec approximation at first, and shall

write the periodic self-consistent potential V(g)lin the form

V(z) = >_‘ Ve eiK‘n'E, (7.1)

En

where the Eh's are reciprocal lattice vectors, We now make

use of the first-order equation of March and Murray (1961), which

we may writc as

“kp? kg i, .z i, .r 31(2kfr)
~ - }{‘ e \') [ e

p(r,%) = 3% ) 5, ——a (7.2)

la)

where the Fermi wave vcctor has magnitude kf and is related to
the Fermi cnergy ¢ by kf2 = 2%. Now if the paramcter A measures
the magnitude of the positive point charges ot the latticc sites

gn, then
v2v(r) = A ;ﬁ o(r - Bn) - U=xp
]
R,
: 1K 02
= % 57 e T - ULxp, (7.3)
Kn

where 1 is the volume of a unit cell. Hence, substituting (7.1)
and (7.2) in (7.3) we may write



i .r — 1k .r ko3 k.2
- 2 =n°= _ A =n‘’= _ f_ _
' Vg © T TR ). un (35 - o
En En
— ik _.r ig .0 31(2k r) '
2 e 7TV, / “n’ ——:——dr>- (7.4)
/ =n
En
Henece, for Kn # 0, we have
i .r J4(2k.r)
2 2k 2 -n - f - - L
V&_n {l_c_‘n + -E'B—‘[ c] —r dr_} = a° (7.5)
e 3 (2kr) $ (2kgr)
ic .2 J1(2k.r i _.r Ja(2k.r
[ = a-(F) [ 5«
b r
ik .r {sin 2k.r - 2k_.r cos 2k.r}
_ uk1° / o M f rqf f ar
= R J(k., <) (7.6)
kf!x £’ "n *
n
where
o 2kf + xn
J(kf, K.'n) = Icnkf + (kf T) in 2kf . (7.7)

To begin our discussion of the total energy, we first
investigate the E(&) rclation in the present approximation,

Thus, we write

E(k) = y € eiBn'K, (7.8)

Bn

A’;U
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where

egn = / Ho(z' - R, 2) dz, (7.9)

with the rule that the Hamiltonian H operates only on r and we
put r’ = p before performing @he integration. p(z', r) here
is the density matrix for the’filled band. After some
calculation we then find, writing

B(k) = & + a5(), (7.10)
that
2 2
my’ﬂ%im% e (7.11)

En
where nB is the volume of the Brillouin zonc and gm =k + Kne

To obtain the change in the sum of the cigenvalues we require

m=%/w®m

Fcrmi sphere

=)

Vn

2 -
/ ky” -k
Fermi sphere

(7.12)
The integral may be evaluated in terms of the function J(kf, xm)

defincd carlier, and the result may be written

A€ = - §§ }: Iv&m|2 fff%é;fml . (7.13)
P |
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If we now insert the Fourlier componcnts of the unscreened lattice

charge into (7.12), that is we put
2
lV'C-ml - 185 (7.14)

we find, introdueing u = «_/2k,,

_ 1 (1 - u?) 1 +
se = - qor ) e [ Ut en 1R

u

]. (7.15)

This, in fact, agrees with the last term iIn the energy as given'

ic

by Bellemans and de Leener, and means that their energy can be
written down directly by straightforward methods, without rccourse
to their development of the grand partition function. Obviously,
our result (7.13) goes beyond their approximation if we insert
the correcct FPourler componcnts.

We finally note that in the low density 1limit, the hydrogen
atom wave functions must give ihe solution of the problem. Then
1t follows that thc momentum distribution function, which seems
of some importance in following the behaviour of the system as

the lattice parameter is varicd, has the form

I(p) = mi%%ryr- (7.16)

It would certainly be of 1nterést to cnquire what modifications
would occur in this function as the'lattice paramcter is now

decrecased, Cbviously, a better approximation than eT to the
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localized orbitals is then requircd, and we are at present
considering ways of introducing pcrturbations having the correct
crystal symmetry in order to obtain the form of I(p) away from
the. point at infinity.

8. Conclugion
For the Sommerfcld model, the physical behaviour of the

system in the two limiting cases rg =+ 0 and ry -+ o is now well
established. If, as we belicve, a transition occurs at a
critical density Pos then accurate location and description of
this is obviously of considerable intcrest and we arc continuing
to examinc this problem.

Less is known on the non-uniform gas problem particularly
in the low-density limit, and, as remarked above, we are
investigating crystalline ficld methods of developing (7.16)
for higher densities.



el

5 jo0 siem
oy

. of

| 3yN9O4
oz

(o}

/\

€O

s




'Y

02

)

1 40 SLINN NI %

84 9 L d r 4] o1

2 3¥NOId
90

-Jﬂ.ﬂlﬁu‘/

L LRI

© (e



Elgore 1
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Captions for Figures
Page
Pair functions for an electron ggs., 21

Curve 1. Low density form for rg = 100.

Curve 2, Extrapolated low density form for rg = L.
Curve 3. Hartree-Fock pair function of egn. (2.6),

correct in limit rg - O,

Momentum distribution in an electron gas, 22

Curve 1, Daniel and Vosko results for rg = 2.

Curve 2, Low density form for ry = 16.

Curve 3, Low density form for reg = 100.
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